Adaptive optimal training of animal behavior
نویسندگان
چکیده
Neuroscience experiments often require training animals to perform tasks designed to elicit various sensory, cognitive, and motor behaviors. Training typically involves a series of gradual adjustments of stimulus conditions and rewards in order to bring about learning. However, training protocols are usually hand-designed, relying on a combination of intuition, guesswork, and trial-and-error, and often require weeks or months to achieve a desired level of task performance. Here we combine ideas from reinforcement learning and adaptive optimal experimental design to formulate methods for adaptive optimal training of animal behavior. Our work addresses two intriguing problems at once: first, it seeks to infer the learning rules underlying an animal’s behavioral changes during training; second, it seeks to exploit these rules to select stimuli that will maximize the rate of learning toward a desired objective. We develop and test these methods using data collected from rats during training on a two-interval sensory discrimination task. We show that we can accurately infer the parameters of a policy-gradient-based learning algorithm that describes how the animal’s internal model of the task evolves over the course of training. We then formulate a theory for optimal training, which involves selecting sequences of stimuli that will drive the animal’s internal policy toward a desired location in the parameter space. Simulations show that our method can in theory provide a substantial speedup over standard training methods. We feel these results will hold considerable theoretical and practical implications both for researchers in reinforcement learning and for experimentalists seeking to train animals.
منابع مشابه
Optimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions
Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملAdaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملبررسی اثربخشی موسیقی ملایم در حین انجام فعالیتهای حرفهای بر بهبود عملکرد شغلی، خودکارآمدی و رفتار سازشی دختران کم توان ذهنی
Background: New definition of intellectual disabilities led to improvement of their abilities. Therefore, the aim of this research was to study the effectiveness of listening to the soft music during the professional activities on job performance, self-efficacy, and adaptive behavior in girls with intellectual disabilities. Method: 40 female students with intellectual disabilities were selec...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016